skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "L. O. Sawada, U. Morar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Early diagnosis of Alzheimer’s Disease (AD) is challenging due to its progressive nature. This study proposes a comprehensive comparison of four classifiers combined with different dimensionality reduction methods to discriminate normal controls (CN) from pre-mild cognitive impairment (pMCI) and early MCI (EMCI) using multimodal datasets including MRIs, PETs, SUVr, clinician amyloid visual reads, and subjects demographics. The most robust classifier for CN vs. MCI is the Mutual Information Best Percentile - Bagging Classifier combination, with 73.91% accuracy and a 4.82% standard deviation (SD). The best performance of 65.23% (11.84% SD) accuracy for CN vs. EMCI was DTC with ANOVA. In comparing CN with pMCI the best classification accuracy was ANOVA-DTC 51.06% (14.19% SD). An accuracy of 56.34% (10.67% SD) was achieved by bagging with ANOVA for multiclass classification ofCN vs. pMCI vs. EMCI. 
    more » « less